This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Phosphine Selenide Arenetellenyliodide Complexes and Telluroselenophosphonium Salts

Cristian G. Hriba; Wolf- W. du Monta; Jörg Jeskea

^a Institut fuer Anorganische und Analytische Chemie, Technische Universitaet Braunschweig, Braunschweig, Germany

To cite this Article Hrib, Cristian G. , du Mont, Wolf- W. and Jeske, Jörg(2008) 'Phosphine Selenide Arenetellenyliodide Complexes and Telluroselenophosphonium Salts', Phosphorus, Sulfur, and Silicon and the Related Elements, 183: 4, 1072 — 1075

To link to this Article: DOI: 10.1080/10426500801901137 URL: http://dx.doi.org/10.1080/10426500801901137

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 183:1072-1075, 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500801901137

Phosphine Selenide Arenetellenyliodide Complexes and Telluroselenophosphonium Salts

Cristian G. Hrib, Wolf-W. du Mont, and Jörg Jeske Institut fuer Anorganische und Analytische Chemie, Technische Universitaet Braunschweig, Braunschweig, Germany

Trialkylphosphine selenides $tBu_niPr_{3-n}PSe$ (n = 3, 2, 1, 0) and bidentate phosphine selenides (dppmSe₂, dppeSe₂) react with arenetellurenyl iodides (RTeI) furnishing complexes $tBu_niPr_{3-n}PSeTe(R)I$ (R = p-tolyl, p-anisyl, mesityl [Mes]), dppm[SeTe(Mes)I]2 and dppe[SeTe(Mes)I]2 that contain Se-Te(R)-I moieties (10-Te-3). Dppe[SeTe(Mes)I]₂ exhibits supramolecular soft-soft interactions by "T-stacking" of the Se-Te(R)-I functions in the solid. When trialkylphosphine selenides $tBu_niPr_{3-n}PSe$ react with two equivalents of RTeI, novel trialkyl(aryltelluroseleno)phosphonium diiodotellurate(II) salts are formed. In solid $[(tBu_2iPrPSeTe-p-Tol)^+(p-TolTeI_2)^-]$ the Te atom from the $(p-TolTeI_2)^-$ anion behaves as soft donor towards the formally uncharged Te atom in the cation $(tBu_2iPrPSeTe-p-Tol)^+$ exhibiting a novel type of $Te\cdots Te$ anion \rightarrow cation donoracceptor interaction (Te···Te 318 pm). Loss of mesityl groups in course of reactions with MesTeI led to a unique iodotelluroselenophosphonium salt $\{[(iPr_3PSeTeI)^+]_2(TeI_6)^{2-}\}\ with\ chelating\ cation-anion\ Te^{II}\cdots I-Te^{IV}\ contacts,\ to$ the six-membered chelate complex $dppmSe_2TeI_2$ with a square planar $cis-Se_2TeI_2$ group, and to $dppeSe_2TeI_2$ with trans- Se_2TeI_2 groups in a helical chain structure.

Keywords Cation-anion interactions; donor-acceptor complexes; phosphonium salts; soft-soft interactions; supramolecular structures; tellurium iodides

INTRODUCTION

Reactions of phosphine selenides (R_3PSe) with iodine lead to 1:1 adducts, that crystallize, depending on their substitution pattern, as molecular species (R_3PSe -I-I) or as ionic compounds [(R_3PSe)₂I⁺]I₃⁻¹⁻⁴; with excess of iodine, iodoselenophosphonium salts [R_3PSe I⁺]I_x-can be generated. Our study on R_3PSe are are adducts of the complexes was stimulated by current work on R_3PSe adducts

We thank Prof. Dr. P. G. Jones and Prof. Dr. L. Ernst (Braunschweig, Germany) for support with X-ray crystallography and NMR spectroscopy.

Address correspondence to Wolf – W. du Mont, Institut fuer Anorganische und Analytische Chemie, Technische Universitaet Braunschweig, Hagenring 30, 38106 Braunschweig, Germany. E-mail: w.du-mont@tu-bs.de

with bromine and iodine that exhibit remarkable supramolecular soft-soft networks in the solid state. $^{4b-6}$ Our observation, that chelate ligands dppmSe $_2$ [bis(diphenylphosphino)methane-diselenide] and dppeSe $_2$ [bis(diphenylphosphino)ethane-diselenide] gave unsoluble adducts with Br $_2$ and I $_2$, and that crystal structures could not be determined, led us to consider RTeI as iodine-related electrophiles. Aryl groups should help to control solubilities of the adducts and 125 Te-NMR should be a useful probe in solution. R_3 PSe complexes of an arenetellurenyl chloride and a related bromide have been characterized earlier, but any NMR spectra of such complexes have not appeared in literature. 7

REACTIONS

Reactions of ligands $t\mathrm{Bu}_n i \mathrm{Pr}_{3-n} \mathrm{PSeTe}$ with RTeI (R = p-tolyl, p-anisyl, mesityl [Mes]) lead to monomeric complexes $t\mathrm{Bu}_n i \mathrm{Pr}_{3-n} \mathrm{PSeTe}(\mathrm{R})\mathrm{I}$. With excess of RTeI, abstraction of an iodide anion from the 1:1 complexes occurs and aryltelluroselenophosphonium aryldiiodotellurate(II) salts are formed. The structure shown in Figure 1a exhibits a unique kind of Te···Te interaction (318 pm) between two-coordinated (8-Te-2) and T-shaped (10-Te-3) atoms. Thermal decomposition of a 1:2 product with loss of a mesityl (2,4,6-trimethylphenyl) substituent furnished the crystalline compound $(i\mathrm{Pr}_3\mathrm{PSeTeI})_2\mathrm{TeI}_6$ in which two of the unusual cations $(i\mathrm{Pr}_3\mathrm{PSeTeI})^+$ are stabilized through iodine-bridging soft-soft interactions with a distorted TeI_6^{2-} anion (Figure 1b).

In solid dppeSe₂[Te(I)Mes]₂ the bidentate phosphine selenide ligand dppeSe₂ is bridging two T-shaped SeTe(I)Mes moieties (Figure 2) in a centrosymmetric binuclear complex. The molecules are packed in a way that allows side-on intermolecular soft-soft interactions in pairs of approximately linear Se-Te-I units, thus linking the molecules to

FIGURE 1 a, b: Cation-anion interactions in (telluroseleno)phosphonium salts.

FIGURE 2 T-stacking in dppeSe₂(MesTeI)₂.

chain-like supramolecular arrays. The "T-T" $\text{Te}\cdots\text{I}$ distances (399 pm) are in the order of the sum of van der Waals radii.

From bidentate phosphine selenides dppmSe $_2$ and dppeSe $_2$ two different kinds of 1:1 complexes with tellurium diiodide were also isolated: dppmSe $_2$ TeI $_2$ is a molecular six-membered chelate complex (12-Te-4) (Figure 3a) that exhibits intermolecular Se \cdots I and Se \cdots Se contacts (Figure 3b), whereas dppeSe $_2$ TeI $_2$ crystallises as helical coordination polymer containing bridging dppmSe $_2$ ligands between trans-TeI $_2$ moieties.

Se(1) "Se(1#) 345 pm, Se(2) "I (2#) 415 pm

FIGURE 3 (a) Molecular structure of dppmSe₂TeI₂; and (b) weak intermolcular Se \cdots I and Se \cdots Se contacts.

NMR-Spectra

Mixtures of R_3PSe with R_3PSe -Te(R)I or of R_3PSe -Te(R)I with $[R_3PSe$ Te(R)]⁺exhibit averaged ^{31}P - and ^{77}Se -NMR signals, i.e., that stable complexes R_3PSe -RTeI and cations $[R_3PSe$ Te(R)]⁺ behave kinetically labile with respect of R_3PSe ligand exchange. 8,9 1

 R_3P Se ligand > 1:1 complex > selenotellurophosphonium salt.

CONCLUSIONS

Structures data of mono- and bidentate phosphine selenide tellurenyl iodide complexes have been determined. Excess tellurenyl iodide acts as iodide scavenger leading to aryltelluroselenophosphonium aryldiodotellurate(II) salts. Side reactions with loss of mesityl groups led to phosphine selenide telluriumdiiodide complexes and to a very particular iodotelluroselenophosphonium salt. $^{31}P,^{77}Se$ and ^{125}Te NMR spectra reveal, that stable complexes $R_3PSe\text{-Te}(R)I$ and cations $[R_3PSe\text{-Te}(R)]^+$ behave kinetically labile with respect of R_3PSe ligand exchange.

REFERENCES

- S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 4499–4502 (1997).
- [2] J. Jeske, W.-W. du Mont, and P. G. Jones, Chem. Eur. J., 5, 385–389 (1999).
- [3] (a) W.-W. du Mont, Main Group Chemistry News, 2 (3), 18–26 (1994); (b) M. Bätcher, Ph.D. thesis, Universität Oldenburg, Germany, 1989; (c) J. Jeske, Ph.D. thesis, Techn. Universität Braunschweig, Germany, 1997.
- [4] (a) M. D. Rudd, S. V. Lindemann, and S. Husebye, Acta Chem. Scand. Ser. A, 51, 689–708(1997); (b) E. Seppälä, F. Ruthe, W. -W. du Mont, and P. G. Jones, J. Chem. Soc., Chem. Commun., 1471–1472 (1999).
- [5] S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 4201–4204 (1998).
- [6] C. G. Hrib, F. Ruthe, E. Seppälä, M. Bätcher, C. Druckenbrodt, C. Wismach, P. G. Jones, V. Lippolis, F. A. Devillanova, and M. Bühl, Eur. J. Inorg. Chem., 88–100 (2006).
- [7] (a) S. Hauge and O. Vikane, Acta Chem. Scand. Ser. A, 27, 3596–3599 (1973); (b) S.
 Hauge and O. Vikane, Acta Chem. Scand. Ser. A, 39, 553–562 (1985); (c) M. D. Rudd,
 S. V. Lindemann, and S. Husebye, Acta Chem. Scand. Ser. A, 50, 759–774 (1996).
- [8] C. G. Hrib, J. Jeske, P. G. Jones, and W.-W. du Mont, Dalton Trans., 3483–3485 (2007).
- [9] C. G. Hrib, P. G. Jones, W.-W. du Mont, V. Lippolis, and F. A. Devillanova, Eur. J. Inorg. Chem., 1294–1302 (2006).